Transgenic Arabidopsis thaliana containing increased levels of ATP and sucrose is more susceptible to Pseudomonas syringae

نویسندگان

  • Renshan Zhang
  • Hua Qi
  • Yuzhe Sun
  • Shi Xiao
  • Boon Leong Lim
چکیده

Disease resistance exerts a fitness cost on plants, presumably due to the extra consumption of energy and carbon. In this study, we examined whether transgenic Arabidopsis thaliana with increased levels of ATP and sucrose is more resistant or susceptible to pathogen infection. Lines of A. thaliana over-expressing purple acid phosphatase 2 (AtPAP2) (OE lines) contain increased levels of ATP and sucrose, with improved growth rate and seed production. Compared to wild type (WT) and pap2 lines, the OE lines were more susceptible to several Pseudomonas syringae pv. tomato (Pst) strains carrying AvrRpm1, AvrRpt2 AvrRps4, AvrPtoB, HrcC and WT strain DC3000. The increased susceptibility of the OE lines to Pst strains cannot solely be attributed to the suppressed expression of R-genes but must also be attributed to the suppression of downstream signaling components, such as MOS2, EDS1 and EDS5. Before infection, the levels of salicylic acid (SA) and jasmonic acid (JA) precursor OPDA were similar in the leaves of OE, pap2 and WT plants, whereas the levels of JA and its derivative JA-Ile were significantly lower in the leaves of OE lines and higher in the pap2 line. The expression of JA marker defense gene PDF1.2 was up-regulated in the OE lines compared to the WT prior to Pst DC3000 infection, but its expression was lower in the OE lines after infection. In summary, high fitness Arabidopsis thaliana exhibited altered JA metabolism and broad suppression of R-genes and downstream genes as well as a higher susceptibility to Pst infections.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis thaliana auxin physiology.

The Pseudomonas syringae type III effector AvrRpt2 promotes bacterial virulence on Arabidopsis thaliana plants lacking a functional RPS2 gene (rps2 mutant plants). To investigate the mechanisms underlying the virulence activity of AvrRpt2, we examined the phenotypes of transgenic A. thaliana rps2 seedlings constitutively expressing AvrRpt2. These seedlings exhibited phenotypes reminiscent of A....

متن کامل

The Pseudomonas syringae avrRpt2 gene product promotes pathogen virulence from inside plant cells.

Several bacterial avr genes have been shown to contribute to virulence on susceptible plants lacking the corresponding resistance (R) gene. The mechanisms by which avr genes promote parasitism and disease, however, are not well understood. We investigated the role of the Pseudomonas syringae pv. tomato avrRpt2 gene in pathogenesis by studying the interaction of P. syringae pv. tomato strain Pst...

متن کامل

Signals involved in Arabidopsis resistance to Trichoplusia ni caterpillars induced by virulent and avirulent strains of the phytopathogen Pseudomonas syringae.

Plants have evolved different but interconnected strategies to defend themselves against herbivorous insects and microbial pathogens. We used an Arabidopsis/Pseudomonas syringae pathosystem to investigate the impact of pathogen-induced defense responses on cabbage looper (Trichoplusia ni) larval feeding. Arabidopsis mutants [npr1, pad4, eds5, and sid2(eds16)] or transgenic plants (nahG) that ar...

متن کامل

MicroRNA400-guided cleavage of Pentatricopeptide repeat protein mRNAs Renders Arabidopsis thaliana more susceptible to pathogenic bacteria and fungi.

Although a large number of microRNAs (miRNAs) have been identified in different plant species, the functional roles and targets of the majority of miRNAs have not yet been determined. Here, Arabidopsis thaliana miRNA400 (miR400) was investigated for its functional role in the defense response to diverse pathogens. Transgenic Arabidopsis plants that overexpress MIR400 (35S::MIR400) displayed muc...

متن کامل

Regulation of miR163 and its targets in defense against Pseudomonas syringae in Arabidopsis thaliana

Small RNAs are important regulators for a variety of biological processes, including leaf development, flowering-time, embryogenesis and defense responses. miR163 is a non-conserved miRNA and its locus has evolved recently through inverted duplication of its target genes to which they belong to the SABATH family of related small-molecule methyltransferases (MTs). In Arabidopsis thaliana, previo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017